ZOOMLION

WA7527-16/20

Counter-weight

	H7N	8		3900/3000/2000kg	
			PHZ3900	PHZ3000M	PHZ2000H
75m	21m	21.5t	5	0	1
72.5 m		20.6 t	4	1	1
70 m		20.6 t	4	1	1
67.5 m		19.5t	5	0	0
65 m		20.6t	4	1	1
62.5 m		19.5t	5	0	0
60m		19.5t	5	0	0
57.5m		18.6 t	4	1	0
55 m		18.6 t	4	1	0
52.5 m		17.6 t	4	0	1
50 m		16.7t	3	1	1
47.5m		15.5 t	4	0	0
45 m	17m	19.5t	5	0	0
42.5 m		18.6 t	4	1	0
40 m		17.6t	4	0	1
37.5 m		17.6t	4	0	1
35 m		17.6 t	4	0	1
32.5 m		16.7 t	3	1	1
30m		15.6t	4	0	0

MAST L68B ($2.0 \times 2.0 \times 3.0 \mathrm{~m}$) WA7527-16/20D
masts
reactions

$H(m)$
$H(m)$

$H(m)$

- Reactions in service
- Reactions out of service

Weight with max free-standing, max jib (without counter-weight ond lood)
= Ballast weight with max free-stonding height Anchorages

Load Diagrams

WA7527－16

－\quad 人7	$\mathrm{R}(\mathrm{m})$	Max Capacit／（m／t）	15.0	20.0	25.0	30.0	32.5	35.0	37.5	40.0	425	45.0	47.5	50．0	52.5	55.0	57.5	60.0	62.5	65.0	67.5	70.0	72.5	75.0
$\begin{gathered} 75 \\ (\mathrm{R}=77.2) \end{gathered}$	U	5．2－31．3／8．0	8.0	8.0	8.0	80	7.7	7.0	6.5	6.0	5.6	5.2	4.9	4.6	4.3	4.1	3.8	3.6	3.4	3.3	3.1	3.0	28	2.7
	bd	4．2－16．5／16．0	16.0	12.7	9.7	7.7	7.0	6.3	5.8	5.3	4.9	45	4.2	3.9	3.6	3.4	3.1	2.9	2.7	2.6	2.4	2.3	2.1	2.0
$\begin{gathered} 725 \\ (\mathrm{R}=74.7) \end{gathered}$	H	5．2－31．9／8．0	8.0	8.0	8.0	80	7.8	7.2	6.6	6.1	5.7	5.3	5.0	4.7	4.4	4.2	39	3.7	3.5	3.4	3.2	30	2.9	
	BU	4．2－16．8／16．0	16.0	13.0	9.9	79	7.1	6.5	5.9	5.4	5.0	4.6	4.3	4.0	3.7	35	3.2	3.0	2.8	2.7	2.5	23	2.2	
$\begin{gathered} 70 \\ (\mathrm{R}=72.2) \end{gathered}$	d	5．2－33．9／8．0	8.0	8.0	8.0	80	8.0	7.7	7.1	6.6	6.1	5.7	5.4	5.0	48	4.5	4.2	4.0	3.8	3.6	3.5	3.3		
	db	4．2－17．8／16．0	16.0	14.0	10.7	85	7.7	7.0	6.4	5.9	5.4	5.0	4.7	4.3	4.1	38	3.5	3.3	3.1	2.9	28	2.6		
$\left(\begin{array}{c} 675 \\ (\mathrm{R}=697) \end{array}\right.$	H	5．2－34．9／8．0	8.0	8.0	8.0	80	8.0	8.0	74	68	6.4	59	5.6	5.2	4.9	4.7	4.4	4.2	4.0	3.8	3.6			
	db	4．2－18．4／16．0	16.0	14.4	411.1	88	80	7.3	6.7	6.1	5.7	5.2	4.9	4.5	4.2	40	3.7	3.5	3.3	3.1	2.9			
$\begin{gathered} 65 \\ (\mathrm{R}=67.2)^{-} \end{gathered}$	U	5．2－35．8／8．0	8.0	8.0	8.0	80	8.0	8.0	7.6	7.0	6.5	6.1	5.7	5.4	5.1	4.8	4.5	4.3	4.1	3.9				
	bld	4．2－18．8／16．0	16.0	14.9	11.4	9.1	8.2	7.5	6.9	6.3	5.8	5.4	5.0	4.7	4.4	4.1	3.8	3.6	3.4	3.2				
$\begin{gathered} 62.5 \\ (\mathrm{R}=64.7) \end{gathered}$	$甘$	5．2－36．5／8．0	80	8.0	8.0	80	80	8.0	78	7.2	6.7	6.3	5.9	5.5	5.2	4.9	4.7	4.4	4.2					
	bU	4．2－19．1／16．0	16.0	15.2	211.6	93	8.4	7.7	7.1	6.5	6.0	5.6	5.2	4.8	4.5	4.2	4.0	3.7	3.5					
$\begin{gathered} 60 \\ (\mathrm{R}=622) \end{gathered}$	d	5．2－37．0／8．0	8.0	8.0	80	80	8.0	8.0	7.9	7.3	6.8	6.4	6.0	5.6	5.3	50	4.7	4.5						
	6 b	4．2－19．4／16．0	16.0	15.4	411．8	9.5	8.6	7.8	7.2	6.6	6.1	5.7	5.3	4.9	4.6	4.3	4.0	3.8						
$\begin{gathered} 57.5 \\ (\mathrm{R}=59.7) \end{gathered}$	b	5．2－37．4／8．0	8.0	8.0	8.0	80	8.0	8.0	8.0	7.4	6.9	64	6.0	5.7	5.4	5.1	4.8							
	db	4．2－19．6／16．0	16.0	15.6	12.0	9.6	8.7	7.9	7.3	6.7	6.2	5.7	5.3	5.0	4.7	4.4	4.1							
$\begin{gathered} 55 \\ (\mathrm{R}=57.2) \end{gathered}$	H	5．2－38．2／8．0	8.0	8.0	8.0	80	8.0	8.0	80	7.6	7.1	6.6	6.2	5.8	5.5	5.2								
	dd	4．2－20．0／16．0	16.0	16.0	12.3	9.9	8.9	8.1	7.5	6.9	6.4	59	5.5	5.1	4.8	4.5								
$\begin{gathered} 52.5 \\ (\mathrm{R}=54.7) \end{gathered}$	H	5．2－39．3／8．0	8.0	8.0	80	8.0	80	8.0	8.0	78	7.3	68	6.4	6.0	5.7									
	6 b	4．2～20．6／16．0	16.0	16.0	12.7	10.2	9.3	8.5	78	7.1	6.6	6.1	5.7	5.3	5.0									
$\begin{gathered} 50 \\ (\mathrm{R}=522) \end{gathered}$	d	5．2－40．7／8．0	8.0	8.0	8.0	80	80	8.0	80	8.0	7.6	7.1	6.7	6.3										
	bt	4．2－21．3／16．0	16.0	16.0	13.2	10.6	9.7	8.8	8.1	7.5	69	6.4	6.0	5.6										
$\begin{gathered} 475 \\ (\mathrm{R}=49.7) \end{gathered}$	U	5．2－40．3／8．0	80	8.0	80	80	80	8.0	8.0	8.0	7.5	7.0	6.6											
	db	4．2－21．1／16．0	16.0	16.0	13.1	10.5	9.5	8.7	8.0	7.4	68	6.3	5.9											
$\begin{gathered} 45 \\ (\mathrm{R}=47.2) \end{gathered}$	H	5．2－40．6／8．0	80	8.0	80	80	80	8.0	8.0	8.0	7.6	7.1												
	bd	4．2－21．2／16．0	16.0	16.0	13.2	10.6	9.6	8.8	8.1	7.4	6.9	6.4												
$\begin{gathered} 425 \\ (\mathrm{R}=44.7) \end{gathered}$	H	5．2－40．7／8．0	80	8.0	80	80	80	8.0	8.0	8.0	7.6													
	Ub	4．2－21．3／16．0	16.0	16.0	13.2	10.6	9.6	8.8	8.1	7.5	69													
$\begin{gathered} 40 \\ (\mathrm{R}=4.22) \end{gathered}$	d	5．2－40．0／8．0	8.0	8.0	8.0	80	8.0	8.0	8.0	8.0														
	UU	4．2－21．6／16．0	16.0	16.0	13.5	108	9.8	9.0	8.2	7.6														
$\begin{gathered} 375 \\ (\mathrm{R}=39.7) \end{gathered}$	H	5．2－37．5／8．0	80	8.0	8.0	80	8.0	8.0	8.0															
	66	4．2～21．7／16．0	16.0	16.0	13.5	10.9	9.9	9.0	8.3															
$\begin{gathered} 35 \\ (R=37.2) \end{gathered}$	H	5．2－35．0／8．0	8.0	8.0	8.0	80	8.0	8.0																
	dd	4．2－21．8／16．0	16.0	16.0	13.6	11.0	10.0	9.1																
$\begin{gathered} 325 \\ (R=34.7) \end{gathered}$	甘	5．2－32．5／8．0	80	8.0	80	80	8.0																	
	bt	4．2－21．9／16．0	16.0	16.0	13.7	11.0	10.0																	
$\begin{gathered} 30 \\ (\mathrm{R}=322)^{2} \end{gathered}$	b	5．2～30．0／8．0	8.0	8.0	8.0	80																		
	bt	4．2－21．9／16．0	16.0	16.0	13.7	11.0																		

Load Diagrams

WA7527-20

	$\mathrm{R}(\mathrm{m})$	Max Capacity/m/t)	15.0	20.0	25.0	30.0	32.5	35.0	37.5	40.0	42.5	45.0	47.5	50.0	52.5	55.		57.5	60.	52.5	5.	57.5	70.0	72.5	75.0
$\begin{gathered} 75 \\ (\mathrm{R}=77.2) \end{gathered}$	θ	5.2-25.8/10.0	10.0	10.0	10.0	8.4	7.7	7.0	6.5	6.0	5.6	5.2	4.9	4.6	4.3	4.1		3.8	3.6	3.4	3.3	3.1	3.0	28	2.7
	bd	4.2-13.7/20.0	18.0	12.7	9.7	7.7	7.0	6.3	58	5.3	4.9	4.5	4.2	3.9	3.6	3.4		3.1	2.9	2.7	2.6	2.4	2.3	2.1	2.0
$\begin{gathered} 72.5 \\ (R=74.7) \end{gathered}$	d	5.2-26.3/10.0	10.0	10.0	100	86	78	7.2	6.6	6.1	5.7	5.3	5.0	4.7	4.4	4.2		3.9	3.7	3.5	3.4	3.2	3.0	2.9	
	bU	4.2~13.9/20.0	18.3	13.0	9.9	7.9	7.1	6.5	5.9	5.4	5.0	4.6	4.3	4.0	3.7	3.5		3.2	3.0	28	2.7	2.5	2.3	2.2	
$\begin{gathered} 70 \\ (\mathrm{R}=72.2) \end{gathered}$	b	5.2-27.9/10.0	10.0	10.0	100	9.2	8.4	7.7	7.1	6.6	6.1	5.7	5.4	5.0	4.8	4.5		4.2	4.0	38	3.6	3.5	3.3		
	bU	4.2-14.8/20.0	19.6	14.0	10.7	85	7.7	7.0	6.4	5.9	5.4	5.0	4.7	4.3	4.1	3.8		3.5	3.3	3.1	2.9	28	2.6		
$\left(\begin{array}{c} 67.5 \\ (\mathrm{R}=69.7) \end{array}\right.$	b	5.2-28.8/10.0	10.0	10.0	10.0	9.5	8.7	8.0	7.4	6.8	6.4	5.9	5.6	5.2	4.9	4.7		4.4	4.2	4.0	38	3.6			
	bd	4.2-15.2/20.0	20.0	14.4	11.1	88	8.0	7.3	6.7	6.1	5.7	5.2	4.9	4.5	4.2	4.0		3.7	3.5	3.3	3.1	2.9			
$\begin{gathered} 65 \\ (\mathbb{R}=67.2) \end{gathered}$	θ	5.2-29.5/10.0	10.0	10.0	10.0	9.8	8.9	8.2	7.6	7.0	6.5	6.1	5.7	5.4	5.1	4.8		4.5	4.3	4.1	3.9				
	bdd	4.2-15.6/20.0	20.0	14.9	11.4	9.1	8.2	7.5	6.9	6.3	5.8	5.4	5.0	4.7	4.4	4.1		3.8	3.6	3.4	3.2				
$\begin{gathered} 62.5 \\ (\mathrm{R}=64.7) \end{gathered}$	b	5.2-30.1/10.0	10.0	10.0	100	10.0	9.1	8.4	7.8	7.2	6.7	6.3	5.9	5.5	5.2	4.9		4.7	4.4	4.2					
	HU	4.2~15.8/20.0	20.0	15.2	11.6	9.3	8.4	7.7	7.1	6.5	6.0	5.6	5.2	48	4.5	4.2		4.0	3.7	3.5					
$\begin{gathered} 60 \\ (\mathbb{R}=62.2) \end{gathered}$	d	5.2-30.5/10.0	10.0	10.0	10.0	10.0	9.3	8.5	7.9	7.3	6.8	6.4	6.0	5.6	5.3	5.0		4.7	4.5						
	UU	4.2-16.1/20.0	20.0	15.4	11.8	9.5	8.6	7.8	7.2	6.6	6.1	5.7	5.3	4.9	4.6	4.3		4.0	3.8						
$\begin{gathered} 57.5 \\ (\mathrm{R}=59.7) \end{gathered}$	b	5.2-30.8/10.0	10.0	10.0	10.0	10.0	9.4	8.6	8.0	7.4	6.9	6.4	6.0	5.7	5.4	5.1		4.8							
	bd	4.2-16.2/20.0	20.0	15.6	120	9.6	8.7	7.9	7.3	6.7	6.2	5.7	5.3	5.0	4.7	4.4		4.1							
$\begin{gathered} 55 \\ (\mathrm{R}=57.2) \end{gathered}$	b	5.2-31.5/10.0	10.0	10.0	10.0	10.0	9.6	8.8	8.2	7.6	7.1	6.6	6.2	5.8	5.5	5.2									
	bd	4.2-16.5/20.0	20.0	16.0	12.3	9.9	8.9	8.1	7.5	6.9	6.4	5.9	5.5	5.1	4.8	4.5									
$\begin{gathered} 52.5 \\ (\mathrm{R}=54.7) \end{gathered}$	b	5.2-32.4/10.0	10.0	10.0	10.0	10.0	10.0	9.2	8.5	7.8	7.3	6.8	6.4	6.0	5.7										
	bd	4.2-17.0/20.0	20.0	16.5	12.7	10.2	9.3	8.5	78	7.1	6.6	6.1	5.7	5.3	5.0										
$\begin{gathered} 50 \\ (R=52.2) \end{gathered}$	b	5.2-33.5/10.0	10.0	10.0	100	10.0	10.0	9.5	88	82	7.6	7.1	6.7	6.3											
	UH	4.2-17.6/20.0	20.0	17.2	13.2	10.6	9.7	8.8	8.1	7.5	6.9	6.4	6.0	5.6											
$\begin{gathered} 47.5 \\ (\mathrm{R}=49.7) \end{gathered}$	b	5.2-33.1/10.0	10.0	10.0	10.0	10.0	10.0	9.4	8.7	81	7.5	7.0	6.6												
	bd	4.2-17.4/20.0	20.0	17.0	13.1	10.5	9.5	8.7	8.0	7.4	6.8	6.3	5.9												
$\begin{gathered} 45 \\ (R=47.2) \end{gathered}$	b	5.2-33.5/10.0	10.0	10.0	10.0	10.0	10.0	9.5	88	81	7.6	7.1													
	bdd	4.2-17.6/20.0	20.0	17.2	13.2	10.6	9.6	88	8.1	7.4	6.9	6.4													
$\begin{gathered} 42.5 \\ (\mathrm{R}=44.7) \end{gathered}$	b	5.2-33.8/10.0	10.0	10.0	10.0	10.0	10.0	9.5	88	82	7.6														
	bd	4.2-17.8/20.0	20.0	17.2	132	10.6	9.6	88	8.1	7.5	6.9														
$\begin{gathered} 40 \\ (\mathrm{R}=4.2 .2) \end{gathered}$	d	5.2-34.0/10.0	10.0	10.0	10.0	10.0	10.0	9.7	8.9	83															
	UH	4.2~17.8/20.0	20.0	17.5	135	10.8	9.8	9.0	8.2	7.6															
$\begin{gathered} 37.5 \\ (\mathrm{R}=39.7) \end{gathered}$	H	5.2-34.2/10.0	10.0	10.0	10.0	10.0	10.0	9.7	9.0																
	dd	4.2-17.9/20.0	20.0	17.6	135	10.9	9.9	9.0	8.3																
$\begin{gathered} 35 \\ (\mathbb{R}=37.2) \end{gathered}$	B	5.2-34.4/10.0	10.0	10.0	10.0	10.0	10.0	9.8																	
	Ud	4.2-18.0/20.0	20.0	17.7	13.6	11.0	10.0	9.1																	
$\begin{gathered} 32.5 \\ (\mathbb{R}=34.7) \end{gathered}$	U	5.2-32.5/10.0	10.0	10.0	100	10.0	10.0																		
	bld	4.2-18.1/20.0	20.0	17.8	13.7	11.0	10.0																		
$\begin{gathered} 30 \\ (R=32.2) \end{gathered}$	d	5.2-30.0/10.0	10.0	10.0	10.0	10.0																			
	UH	4.2-18.1/20.0	20.0	178	13.7	11.0																			

Mechanisms

	Slewing	$\begin{aligned} & \text { S75CA-130LB14/12A } \\ & \text { S75CA-1301B14/12A(M) } \end{aligned}$	$55 \mathrm{~kW}$	Hoisting		H55FL40-700A	
-	$0 \sim 0.7 \mathrm{r} / \mathrm{min}$	$7.5 \mathrm{~kW} \times 2$		b	20 t	90m/min	Vari-speed byload
-	Trolleying	BP75A			$80 t$	$36 \mathrm{~m} / \mathrm{min}$	
$\underline{\square}$	$\begin{aligned} & 0 \sim 57 \mathrm{~m} / \mathrm{min}(16 t) \\ & 0 \sim 115 \mathrm{~m} / \mathrm{min}(8 t) \\ & \hline \end{aligned}$	7.5 kW	700 m	bd	$4.0 t$	$45 \mathrm{~m} / \mathrm{min}$	
7	Traveling	$\begin{aligned} & \text { ZAH52A-D×2 } \\ & \text { ZDH52A-D } \times 2 \end{aligned}$			16.0t	$18 \mathrm{~m} / \mathrm{min}$	
	0~25m/min	$5.2 \mathrm{KW} \times 4$		Consultusif overtop			
+	$380 \mathrm{M}(\pm 10 \%) 50 \mathrm{~Hz}$		$77.5+5.2 \times 4 \mathrm{fWW})$				

Packing list

Upper Parts

Dexcription	Skerch	$L(\mathrm{~m})$	B (m)	$\mathrm{H}(\mathrm{m})$	Werghampieceld	Oty
The front section of counter-jib		6.87	1.45	2.51	3.87	1
The middle section of counter-jib		4.20	1.58	0.63	1.01	1
The back section of counter-jib (Include Hoisting Mechanism and Exclusive Ropes)		11.91	1.68	2.02	9.80	1
lib I (Include Trolleying Mechanism)		10.35	1.49	2.54	4.5	1
Jib II		10.31	1.49	2.42	2.78	1
Jib IIII	\rightarrow -	10.27	1.49	2.40	2.11	1
Jib IV		10.22	1.49	2.36	1.75	1
Jib V		2.71	1.49	1.92	0.42	2
Jib Vl		10.20	1.49	1.91	1.14	1
jib VII	$\cdots \mathrm{N}$	5.19	1.49	1.87	0.48	1
Jib VII		5.20	1.49	1.88	0.37	1

Jib IX

10.16

Jibend

1.01	1.74	2.26

0.15

1

Trolley

Hook

1.60
2.34
0.35
0.60

1

Cabin

2.10
1.30
2.25
0.70

1

WA7527-16/20KB Bottom Parts
Desaiption
skerth
L(m)

5.10
2.90
3.20
9.90

Slewing assembly

Transition section

2.90
2.90
3.98
2.70

1

Climbing equipment
VM/
11.73
3.07
2.87
6.15

1

Base Tower Section Main Chord		5.95	0.32	0.32	0.66

WA7527-16/20D Bottom Parts
Description
Sketch
1 (m)
B(n)
H(m) Weight Per plecer(!)
d

Slewing assembly

1

Transition section

2.67
2.67
2.46
1.77

1

Climbing equipment
$\pm \underset{\square}{ \pm / \sqrt{W}}$
$\begin{array}{lll}7.23 & 2.60 & 2.80\end{array}$
3.02

1

Base Tower Section

7.85	2.10	2.15

5.00

1

Mechanisms／Mecanismos／Механизмы

$380 \mathrm{~V}(+/-10 \%) 50 \mathrm{~Hz}$			bd		bid		kW	\square
$\stackrel{\ominus}{\mathrm{F}}$	H55FL40－700A	t	2	8	4	16	55	700 m
		$\mathrm{m} / \mathrm{min}$	90	36	45	18		
	H75FL50－880A	t	2.5	10	5	20	75	880 m
		$\mathrm{m} / \mathrm{min}$	95	38	47.5	19		
19	S75CA－130LB14／12A S75CA－130LB14／12A（M）	r／min	0－0．7				2×7.5	
4 龺	BP75A	$\mathrm{m} / \mathrm{min}$	0－50				7.5	
4－	$\begin{aligned} & \text { ZAH52A-D×2 } \\ & \text { ZDH52A-D×2 } \end{aligned}$	$\mathrm{m} / \mathrm{min}$	0－25				4×5.2	
	$\begin{aligned} & 380 \mathrm{~V}(\pm 10 \%) 50 \mathrm{~Hz} \\ & 380 \mathrm{~V}(\pm 10 \%) 60 \mathrm{~Hz} \end{aligned}$	H55FL40－700A	77.5 kW （excluding travelling and climbing）					
	$\begin{aligned} & 415 \mathrm{~V}(\pm 10 \%) 50 \mathrm{~Hz} \\ & 440 \mathrm{~V}(\pm 10 \%) 60 \mathrm{~Hz} \end{aligned}$	H75FL50－880A	97.5 kW （excluding travelling and climbing）					

	1231	H080	Hilili
40HQ	High cube 40＇	Contenedor 40	Высокий ку6 40°
－＋1\％	Lorry 13.4 m	Camión 13／4m	Грузовмек 13.4 m
－	Reactions in service	Reacciones en servicio	Реакции в сереисе
T	Reactions out of service	Reacciones fuera de servicio	Реакции вне обспуживวния
会	Total weight	Pesototal	Обций вес
时	Counter weight	Contrapesos	контргруз
\＃	Ground ballast	Balasto en suelo	Наземный балласт
4	Hoisting	Elevación	Подьем
$\stackrel{ }{*}$	Slewing	Giro	Поворот
－ 0	Trolleving	Traslación de carro	Перемещение
－	Travelling	Traslación de grúa	Передвижение
IT	Consult us	Consulte con nosotros	Проконсультируйтесь с нами
$2.0 \mathrm{~m}$	Fish plate pinned masts 2.0 m Counter－jib Length	Mástil con planita y pernos para su ensambre 2.0 m longitud de contrapluma	Соединенная болтами мачта 2.0 m длина стрепы балансира
4	This document is non－contractual and subject to modification without prior notice	Este documento no es contractual y está sujeto a modificaciones sin previo aviso	Данней документ не явлнется договорным и может быть изменен без предварительного уведомления

